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Abstract
The classical Gaussian model, a parametric family of the Gaussian distribution,
is known to be a space of constant negative curvature if one regards the Fisher
information on the model as a Riemannian metric. Constant curvature reflects
the scale invariance of the classical Gaussian model, which is well known in
information geometry. However, it is shown that if the Kubo–Mori–Bogoliubov
Fisher information on the quantum Gaussian model is adopted as a Riemannian
metric, then this scale invariance on the Gaussian model is broken due to the
quantum effect. In the present study, the connection between the geometry of
the classical Gaussian model and its quantum counterpart is clarified using the
Taylor expansion with respect to the Planck constant. It is further shown that
such a method is not applicable to a finite-dimensional system such as the spin
system.

PACS numbers: 02.40.Ky, 03.65.Ta, 03.67.−a

1. Introduction

In classical parameter estimation, a parametric family of probability distributions is assumed

Mcl := {pθ(x) : θ ∈ � ⊂ R
k}, (1)

and the unknown parameter is inferred from sample data x1, x2, . . . . The unknown parameter
θ = (θ1, . . . , θk) of a probability density pθ(x) ∈ Mcl is considered as a coordinate, and the
family (1) is referred to herein as a (classical) model manifold, or as simply as a model [1].

Čencov showed that there exists an essentially unique Riemannian metric up to a constant
factor on a model if monotonicity is imposed under stochastic maps [4]. Thus, a model can
be regarded as a Riemannian manifold. In particular, this metric is referred to as the Fisher
information, or Fisher metric, and is derived as
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g
(cl)
ij (θ) = ∂2

∂θj ∂θ ′i D(pθ ′ ‖pθ)

∣∣∣∣
θ ′→θ

, (2)

where D(p‖q) := ∫
p(x) log

(
p(x)

q(x)

)
dx is the Kullback–Leibler divergence or the relative

entropy, which in classical statistics is considered to be a natural distance-like measure from
p(x) to q(x) in the totality of all probability densities. The inverse matrix (g(cl))ij gives
the limitation of the accuracy of the parameter estimation in the corresponding family of the
probability density. Roughly speaking, the Fisher information represents the extent to which
one can distinguish between pθ+dθ and pθ from sample data.

Next, let us consider the quantum setting. Let H be a separable (possibly infinite-
dimensional) Hilbert space of a quantum system. The unknown quantum state is described
by a positive operator of trace one on H. This operator is referred to as a state or a density
operator and is a quantum analogue of probability distributions. Let S(H) denote the set of all
density operators on H, i.e., S(H) := {ρ : Tr ρ = 1, ρ � 0}. A parametric family of density
operators,

M := {ρθ ∈ S(H) : θ ∈ � ⊂ R
k},

is referred to as a (quantum) model and a quantum analogue of a classical model. In addition,
quantum relative entropy [22], a quantum version of the Kullback–Leibler divergence, is
defined as follows:

D(ρ‖σ) := Tr[ρ(log ρ − log σ)], ρ, σ ∈ S(H), (3)

and plays a crucial role in several topics of quantum information, for instance, quantum channel
coding [13, 25] and quantum hypothesis testing [10, 21]. Thus, it seems natural to adopt the
second derivative of (3) as a quantum analogue of the Fisher information (2). A formal
definition based on the Kubo–Mori–Bogoliubov (KMB) inner product [18] (or canonical
correlation in linear response theory) is not given here, and KMB Fisher information is
derived only from the quantum relative entropy parallel to (2),

gKMB
ij (θ) = ∂2

∂θj ∂θ ′i D(ρθ ′ ‖ρθ )

∣∣∣∣
θ ′→θ

. (4)

The above formula is sufficient for the purposes of the present study. KMB Fisher information
is not a unique extension of the classical Fisher information. Petz [23, 24] showed that there
exist many Riemannian metrics on a quantum model manifold under the same condition as
Čencov imposed on a classical model. This arbitrariness is due to noncommutativity.

Thus, various extensions have been developed. For example, the Fisher information based
on the symmetric logarithmic derivative (SLD Fisher information) was proposed by Helstrom
[9]. SLD Fisher information gives the most informative Cramér–Rao bound in the one-
parameter unbiased estimation [12, 20]. The Fisher information based on the right logarithmic
derivative (RLD Fisher information) is another candidate. RLD Fisher information gives the
best bound in a certain two-parameter estimation [12, 30]. According to Hayashi [7], with
respect to large deviation, SLD Fisher information is preferable to KMB Fisher information.
At present, KMB Fisher information has not yet been given such characterization with regard
to practical application.

From the above argument, the question may arise as to whether KMB Fisher information
is significant in practical application. However, as described below, there is evidence of the
significance of KMB Fisher information.

In classical Bayesian prediction, when we have no knowledge on the unknown parameter

θ specifying pθ(x), the volume element of the model manifold (i.e.,
√

det g(cl)
ij (θ)) is often

adopted as a noninformative prior distribution of θ , and the prediction method based on this
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prior distribution is used. However, there exists another noninformative prior distribution that
gives a better prediction method when the Fisher information satisfies a certain geometrical
condition. Detailed explanation is not the central issue of the present paper and omitted. (See,
Komaki [17]) But the key to such arguments is that the Fisher information is obtained by
differentiating the Kullback–Leibler divergence (the classical relative entropy) as indicated
by (2).

In the quantum Bayesian prediction, which was recently formulated by Tanaka and
Komaki [27], the analogous argument is expected to hold with some modification. Although
there are several kinds of the Fisher information on the quantum statistical models, at least
in quantum Bayesian prediction, it seems the most natural to focus on the Fisher information
derived from the quantum relative entropy, i.e., KMB Fisher information, because KMB
Fisher information is that obtained by differentiating the quantum relative entropy as indicated
by (4).

Further, in quantum information geometry, KMB Fisher information has a distinguishing
feature. Among all of the quantum Fisher information with desirable properties, only
KMB Fisher information allows a quantum model manifold to have a torsion-free affine
connection [1].

As mentioned above, we expect that KMB Fisher information plays a crucial role in some
application and thus, investigation of the geometrical structure on a specific model endowed
with KMB Fisher information is significant not only from mathematical viewpoint but also
from practical viewpoint. For finite-dimensional systems, such as the spin system, a number
of studies [2, 5, 11, 19, 23] have investigated the geometrical structure on quantum model
manifolds endowed with KMB Fisher information. However, few studies have examined the
infinite-dimensional system [14, 15]. Thus, the present study investigates the geometrical
structure on the quantum Gaussian model endowed with KMB Fisher information. The scalar
curvature is found to be negative. This result is similar to that of the classical counterpart.
While the classical Gaussian model is treated as a typical example, both theoretically and
practically, the quantum model has not been considered as such. In the present paper, it is
clarified how these two models are connected with each other. Particular emphasis is placed
on the fact that the change of geometrical structure in the classical Gaussian model can be
interpreted as being caused by a quantum effect.

In section 2, the quantum Gaussian model in quantum estimation, which often appears
in quantum optics, is reviewed. The explicit formula of the relative entropy on the quantum
Gaussian model is also given. KMB Fisher information is obtained from the formula. In
section 3, geometrical quantities such as the Riemannian curvature tensor are calculated based
on KMB Fisher information. The scalar curvature on the quantum Gaussian model is shown
to be negative. In section 4, the Taylor expansion with respect to the Planck constant h̄ around
0 is proposed. From this expansion, these geometrical quantities are shown to reduce to those
defined on the classical model of Gaussian distributions as h̄ → 0. It is further shown that
such a method is not applicable to a finite-dimensional system such as the spin system.

2. KMB Fisher information on the quantum Gaussian model

The quantum Gaussian state, which often appears in quantum optics and represents the thermal
noise of the quantum harmonic oscillator, is explained in this section. Generally, the quantum
Gaussian state has three real parameters and is given by

ρζ,N := 1

πN

∫
C

exp

(
−|α − ζ |2

N

)
|α〉〈α|d2α,
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where |α〉 is the coherent vector in the Boson–Fock representation, N > 0 is the expectation
of the number operator and denotes the average number in the excited mode of the harmonic
oscillator and ζ = Re ζ + iIm ζ ∈ C is referred to as the mean parameter.

In thermal equilibrium of temperature T ,N is determined as a function of T:

N =
{

exp

(
h̄ω

kT

)
− 1

}−1

,

where ω is the frequency of the harmonic oscillator and k is the Boltzmann constant.
The mean parameter ζ represents the mean of the electromagnetic field. Decades ago,

optical communication, in which information can be transmitted by adjusting the value of ζ ,
was considered. As such, the estimation of the mean parameter, including the optimization of
measurement devices, was investigated (see, e.g., chapter 6 in Holevo [12]).

Next, a parametric family of the quantum Gaussian states with unknown mean parameter
and variance is considered:

M := {ρθ : θ1 = Re ζ ∈ R, θ2 = Im ζ ∈ R, θ3 = N > 0}.
This model is referred to as the quantum Gaussian model. For parameter estimation of the
quantum Gaussian model, refer to [8] and the references therein.

Recently, Tanaka and Komaki [28] investigated the Bayesian prediction of the quantum
Gaussian model and obtained the following formula of the quantum relative entropy for this
model:

D(ρθ‖ρθ ′) = D(ρζ,N‖ρζ ′,N ′)

= log

(
N ′ + 1

N + 1

)
+ N log

(
N

N + 1

N ′ + 1

N ′

)
+ log

(
N ′ + 1

N ′

)
|ζ − ζ ′|2. (5)

The above formula (5) is the starting point of the argument of the present paper.
From equation (5), KMB Fisher information on the quantum Gaussian model is obtained

as follows:

(
gKMB

ij

) =

2 log N+1

N
0 0

0 2 log N+1
N

0
0 0 1

N
− 1

N+1


 . (6)

In the following section, geometrical quantities based on the above metric (6) are given.

3. Geometrical structure derived from KMB Fisher information

Once a Riemannian metric is defined on a quantum model manifold, geometrical quantities are
derived from the metric. See, e.g., Kobayashi and Nomizu [16] for the differential geometry.

Let us calculate some geometrical quantities. Straightforward calculation yields the
Riemannian curvature tensor, as follows:

R1212 = 1

(N + 1)
− 1

N
,

R1313 = R2323 = 1

2 log
(

N+1
N

) (
1

N + 1
− 1

N

)2

+
1

2

{
1

(N + 1)2
− 1

N2

}
.

The Ricci tensor and the scalar curvature are also given by

R11 = R22 = −1

2

(
1

N + 1
+

1

N

)
,

R33 = 2

{(
1

N+1 − 1
N

)
2 log

(
N+1
N

)
}2

+
1

(N+1)2 − 1
N2

2 log N+1
N

,
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and

R := gijRji = 2
1
N

− 1
N+1(

2 log N+1
N

)2 −
1
N

+ 1
N+1

log
(

N+1
N

) .

The scalar curvature is shown to be negative through a lengthy but straightforward
calculation. In information geometry, the scalar curvature on the classical Gaussian model is
negative constant [1]. Constant curvature reflects the scale invariance of the classical Gaussian
model. However, the above curvature is not constant and R < − 3

2 . In the following section,
the difference is shown, using the perturbative method, to be due to a quantum effect.

4. Perturbative method

4.1. Simple analysis

As indicated in a standard textbook on quantum mechanics, the classical theory can be seen
as an approximation of quantum theory neglecting the Planck scale. If one applies this
idea to quantum information geometry, a certain limiting operation may yield the classical
counterpart.

Unfortunately, this does not proceed well in the finite-dimensional Hilbert space.
Next, the spin 1

2 system described in a two-dimensional Hilbert space is considered. The
noncommutativities in this system are derived from SU (2) algebra. A set of generators in
SU (2) is given by a set of traceless Hermitian matrices {S1, S2, S3} satisfying

[Si, Sj ] = iεijk

h̄

2
Sk.

Then, noncommutativities vanish when taking the classical limit h̄ → 0. However, since
Si = h̄ σi

2 and the Pauli matrix σi is dimensionless, Si also becomes negligible in the classical
limit.

This phenomenon can be easily understood as follows. Since the degree of freedom of
spin is purely quantum-mechanical and has no classical counterpart, such a degree of freedom
cannot be distinguished in the classical limit.

However, the quantum Gaussian model does not follow the above argument. Taking the
classical limit h̄ → 0 (equivalently [p, q] → 0) allows simultaneous projective measurement
of both position q and momentum p. Then, when the simultaneous projective measurement is
performed, the following classical Gaussian model is obtained:

Mcl := {pζ,N(p, q) : ζ ∈ C, N > 0},

pζ,N (p, q) := 1

πN
exp

{
− (p − Re ζ )2 + (q − Im ζ )2

N

}
,

(7)

where pζ,N(p, q) represents the joint distribution of momentum and position [12]. Therefore,
the quantum Gaussian model with such a measurement reduces to the classical Gaussian model.
Generally, in the canonical conjugate relation (CCR) representation, noncommutativities arise
in the Planck scale and the CCR representation has a nontrivial classical counterpart, which is
different from finite-dimensional unitary representations, such as the spin representation.

Let us consider the above argument in detail. First, recall that the Hamiltonian of the
harmonic oscillator

H := h̄ω(a∗a) + 1
2h̄ω.
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For the ground state |0〉, the expectation value of H is 〈H 〉 = 〈0|H |0〉 = 1
2h̄ω. It represents

the quantum fluctuation by the zero-point oscillation. On the other hand, for the quantum
Gaussian state ρθ , we obtain

〈H 〉 = Tr ρθH = h̄ω(N + |ζ |2) + 1
2h̄ω.

Intuitively speaking, the first term represents the classical energy of the harmonic oscillator. If
the quantum fluctuation is much smaller than the classical energy, h̄ω 	 (N + |ζ |2)h̄ω holds.
Here, we adopt another parametrization

Ñ := h̄N, ζ̃ :=
√

h̄ζ.

Note that h̄ can be considered as a scaling parameter. In the above parametrization, the
quantum Gaussian state is rewritten as

ρ̃ζ̃ ,Ñ := 1

πÑ

∫
C

exp

(
−|α̃ − ζ̃ |2

Ñ

) ∣∣∣∣ α̃√
h̄

〉 〈
α̃√
h̄

∣∣∣∣ d2α̃,

where α̃ = √
h̄α.

We consider the situation where both Ñ and |ζ̃ |2 are much larger than h̄. For fixed ω, this
situation implies that the quantum fluctuation is negligible. Since the inner product of the two
coherent vectors |α̃/

√
h̄〉, |β̃/

√
h̄〉 is given by∣∣∣∣

〈
α̃√
h̄

∣∣∣∣ β̃√
h̄

〉∣∣∣∣
2

= exp

{
−|α̃ − β̃|2

h̄

}
,

the orthogonal relation is obtained when h̄ → 0 for fixed α̃, β̃. The orthogonal relation also
implies that the positive operator valued measure (POVM){

h̄

π

∣∣∣∣ α̃√
h̄

〉 〈
α̃√
h̄

∣∣∣∣ d2α̃

}
α̃∈C

reduces to the simultaneous projective measurement.
The quantum relative entropy is rewritten as

D(ρ̃θ̃‖ρ̃θ̃ ′) := log

(
Ñ ′ + h̄

Ñ + h̄

)
+

Ñ

h̄
log

(
Ñ

Ñ + h̄

Ñ ′ + h̄

Ñ ′

)
+

1

h̄
log

(
Ñ ′ + h̄

Ñ ′

)
|ζ̃ − ζ̃ ′|2. (8)

The above quantity and other geometrical quantities derived from it are expanded with respect
to h̄ and this is the basic idea of our perturbative method discussed in the next subsection.

Previously, in order to avoid difficulties related to functional analysis, arguments in
quantum information geometry were usually restricted to finite-dimensional Hilbert spaces
[1]. However, it is important to consider quantum information geometry for models described
in infinite-dimensional Hilbert spaces because the quantum Gaussian model can be seen as a
quantum analogue of the classical Gaussian model, and the classical Gaussian model is taken
as a typical example in classical information geometry. In particular, as long as the CCR
representation is used, the Taylor expansion with respect to the Planck constant, which is often
used in quantum physics, is also valid.

4.2. Perturbative method

Generally, it is often difficult to calculate geometrical quantities explicitly in a specific model
manifold. In classical information geometry, asymptotic expansion (see, e.g., van der Vaart
[29]) is used as an approximation method. On the other hand, in quantum information
geometry, such kinds of expansion are impossible because the probability spaces change
according to measurements [12]. However, the Taylor expansion with respect to h̄ is available,
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and in the present subsection we see that this expansion is useful to see the contrast between
the quantum information geometry and the classical counterpart in the quantum Gaussian
model. This method is like a perturbation technique in quantum mechanics and here we call
it perturbative method.

From now on, we write N instead of Ñ and so on. In equation (8), let us consider the
Taylor expansion with respect to h̄. Then, we obtain

D(ρθ‖ρθ ′) =
{

log
N ′

N
+

(
N

N ′ − 1

)
+

|ζ − ζ ′|2
N ′

}

− 1

2N

{(
N

N ′ − 1

)2

+
N

N ′
|ζ − ζ ′|2

N ′

}
h̄ + O(h̄2)

= D(pθ‖pθ ′) + O(h̄).

Note that the principal term is the Kullback–Leibler divergence on the classical Gaussian
model (7).

Thus, the parameter h̄ is considered to represent the strength of the noncommutativity. In
other words, the relative entropy in the quantum Gaussian model coincides with the classical
counterpart in the first order of h̄, and higher order terms can be regarded as a quantum
correction if h̄ is relatively small. The Taylor expansion around h̄ ∼ 0 is referred to as the
perturbative expansion.

This viewpoint applies also to KMB Fisher information given by (6). Using the Taylor
expansion, the following is easily obtained:

gKMB
ij (h̄) = g

(cl)
ij + g

(1)
ij h̄ + O(h̄2),

where

g
(cl)
ij =




2
N

0 0
0 2

N
0

0 0 1
N2


 , g

(1)
ij =


− 1

N2 0 0
0 − 1

N2 0
0 0 − 1

N3


 .

The former quantity is the Fisher information on the classical Gaussian model.
Likewise, the Taylor expansion of other geometrical quantities can be obtained as follows:

R1313 = R2323 = − 1

2N3
+

3h̄

4N4
+ O(h̄2),

R1212 = − 1

N2
+

h̄

N3
+ O(h̄2),

and

R11 = R22 = − 1

N
+

h̄

2N2
+ O(h̄2),

R33 = − 1

N2
+

h̄

2N3
+ O(h̄2).

Finally, the scalar curvature is expanded as

R = −3

2
+

3

4

(
h̄

N

)
+ O(h̄2). (9)

The following comments pertain to the above-mentioned results. First, the fact that
g(cl) � gKMB, where A � B denotes that A − B is semi-positive definite, implies that the
Gaussian states can be better distinguished if the quantum fluctuation is sufficiently negligible.

Second, R is equal to R(cl) = − 3
2 , the scalar curvature on the classical Gaussian model

(7), in the first order of h̄.
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Third, KMB Fisher information is compared with that based on RLD and SLD. A number
of studies have investigated the question as to which metric is suitable for the space of
density matrices [3, 26]. According to Petz [24], the real part of RLD Fisher information is
the maximum among the normalized monotone metrics, and SLD Fisher information is the
minimum in the space of density operators, as shown below. In the quantum Gaussian model
with original parametrization (or taking h̄ = 1), RLD Fisher information [7, 12, 30] is given by

gRLD =




2N+1
N(N+1)

+i
N(N+1)

0
−i

N(N+1)
2N+1

N(N+1)
0

0 0 1
N(N+1)




and SLD Fisher information [12] is given by

gSLD =




2
N+ 1

2
0 0

0 2
N+ 1

2
0

0 0 1
N(N+1)


 .

Straightforward calculation yields

Re gRLD � gKMB � gSLD.

This is not a surprising result, but rather a consequence of the theorem by Petz. However,
it is interesting to observe what happens if the imaginary part of gRLD is included. Though
Tr gRLD � Tr gKMB,

det
(
gRLD − gKMB

)
< 0,

for smaller N, where the third component is neglected because gi3 is common in the above
three metrics. Thus, the relationship gRLD � gKMB does not necessarily hold.

5. Summary

From equation (6), KMB Fisher information was derived and some geometrical quantities
on the quantum Gaussian model were calculated. Straightforward calculation shows that the
scalar curvature on the quantum Gaussian model is negative but not constant, which implies
that the scale invariance is broken. By introducing the Taylor expansion with respect to h̄,
the principal terms are equal to those derived from the classical Gaussian model. It is a well-
known fact in classical information geometry that the scale invariance holds in the classical
Gaussian case and equation (9) indicates that the scale invariance of the Gaussian model is
broken in the first order of h̄. Physically, it is possible to interpret the geometry in the classical
world as being slightly modified due to a quantum correction. In other words, the smaller
the scale of the physical system, the more dominant the quantum fluctuation becomes. This
implies a certain mathematical similarity to quantum gravity. We believe that this kind of
expansion with respect to h̄ is useful as an approximation method in quantum information
geometry while another application is under study.

Acknowledgments

The present study was supported in part by the Japan Society for the Promotion of Science
(JSPS). I would like to thank Professor Fumiyasu Komaki for his comments on negative
curvature on the classical Gaussian model.



KMB Fisher information on the quantum Gaussian model 14173

References

[1] Amari S and Nagaoka H 2000 Methods of Information Geometry (Providence, RI: American Mathematical
Society)

[2] Andai A 2003 Monotone Riemannian metrics on density matrices with nonmonotone scalar curvature J. Math.
Phys. 44 3675–88

[3] Braunstein S L and Caves C M 1994 Statistical distance and the geometry of quantum states Phys. Rev.
Lett. 72 3439–43
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